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1 Introduction
In this paper, we aim to explore the dynamical system analysis of the Black-
Scholes (B-S) model. The B-S was the first model in the field of financial
mathematics that elegantly priced European call and put options in the 1970’s.
Published by Economists Fischer Black and Myron Scholes in 1973, and later
won them the Nobel Prize in Economics in 1997 [2], the partial differential
equation (PDE) describes the theoretical price of the option using variables
such as the stock price (S) and time to expiration (t) as well as parameters like
risk-free interest rate (r), and the volatility of the underlying asset (σ) [1].

C(St,K, T, r, σ) = StN(d1)−Ke−rTN(d2) (1)

However, in this paper we will examine only the differential form of this
equation and limit our focus to the case of the European call option, as in (2)

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2 ∂

2C

∂S2
= rC (2)

By setting each of the partial derivatives to zero, we will effectively transform
the partial differential equation (PDE) into an ordinary differential equation
(ODE) with two separate cases. To further simplify our analysis, we will apply
similar techniques introduced in Section 3.7 of Strogatz’s "Nonlinear Dynamics
and Chaos." Specifically, we will first represent the stock price, S, as e∧v, and
introduce the variables X and Y for the price of the call option C and its
derivative with respect to v. The culmination of these modifications will result
in a 2-dimensional linear system, which we will then thoroughly investigate using
tools from Section 5.1 and 5.2 in Strogatz’s textbook to gain new insights into
the behavior and properties of the Black-Scholes equation [3].

2



2 Transformation and Linearization of PDE to
ODE

As described in the Introduction, the Black-Scholes Equation depends on both
time and the price of the stock. For the sake of the analysis, in this project
we assume that the partial derivative of the call option’s price with respect to
time is 0. This allows us to transform the equation into an ODE system that is
ultimately with respect to the price of the stock only [4].

rS
∂C

∂S
+

1

2
σ2S2 ∂

2C

∂S2
= rC

The next step is to apply variable and parameter substitution techniques from
Strogatz 3.7 to linearize the equation. Specifically, we have to first rewrite S,
the price of the stock, in terms of an exponential.

Let S = ev
dc

dv
=

dc

ds

ds

dv

=
dC

ds
ex

= s
dC

ds

=⇒ d2c

dv2
=

d

ds

(
s
dC

ds

)
ds

dv

=
dC

ds

ds

dv
+ s

d2c

ds2
ds

dv

= s
dC

ds
+ s2

d2c

ds2

(3)

By reorganizing the second equation, we then have:

s
dc

ds
=

dC

dv

s2
d2C

ds2
=

d2c

dv2
− dC

dv

(4)

We could then directly substitute these two equations into the time inde-
pendent Black-Scholes to obtain

r
dC

dv
+

1

2
σ2

(
d2C

dv2
− dC

dv

)
− rC = 0
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3 Matrix Form
To write the above second order differential equation as a matrix, we introduce
variable x and y.

x(v) = C(v)

y(v) =
dC

dv

The substitution would therefore yield the following 2-D linear ODE system:

dx

dv
= y

dy

dv
=

2r

σ2
x+

(
1− 2r

σ2

)
y

Which we rewrite as

X ′ = AX⃗ (5)

Where
X⃗

is the differential vector operator (gradient) and A is the matrix coefficients of
the system above.
Our analysis is therefore,

A =

(
0 1
2r
σ2 1− 2r

σ2

)
τ = 1− 2r

σ2

∆ = − 2r

σ2

Where the symbols have their usual meanings of trace and determinant.
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4 The Eigenvalues
We now proceed to calculate the discriminant of the matrix.

τ2 − 4∆ =

(
1− 2r

a

)2

+ 4
2n

σ2

=

(
1 +

2r

r

)2

Note that this is strictly positive. Assuming the interest rate r is positive (which
of course it generally would be), then the trace is negative, which tells us that
we have a saddle point equilibrium and two real eigenvalues λ1 and λ2 such that

λ1 > 0 > λ2

Determining the eigenvalues and eigenvectors is as follows.

A =

(
0 1
2r
σ2 1− 2r

σ2

)

For simplicity, let K = 2r
σ2

=⇒ A =

(
0 1
K 1−K

)
(6)

Since A is a 2 × 2 matrix, we can consider the negative of the standard
determinant to find the eigenvalues.

det(A− λI) = det(λI −A)

=

∣∣∣∣ λ −1
−k −1 + k + λ

∣∣∣∣
= λ(λ+ k − 1)− k

= λ2 + λ(k − 1)− k

= (λ− 1)(λ+ k) = 0

⇒ λ1 = 1

λ2 = −k = λ2 =
−2r

σ2
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5 The Eigenvectors
Our modal matrix is given as

M (λi) =

(
λi −1
−k λi + k − 1

)
(7)

where K is defined as previously and i = 1, 2.

Eigenvector 1

mv⃗1 = 0 (8)

As usual, we consider the kernel where V⃗1 is a 2D vector in real space (because
we have real eigenvalues). Of course, we expect eigenvectors going in opposite
directions to create the saddle point.

⇒ x1 − y1 = 0

⇒ x1 = y1

⇒ v⃗1 =

(
1
1

)
Eigenvector 2

M (λ2) =

(
λ2 −1
−k λ2 + k − 1

)
⇒ m (λ2 = −k) =

(
−k −1
−k −1

)
⇒ mv⃗2 = 0

⇒
(

−k −1
−k −1

)(
x
y

)
= 0

− kx− y = 0

⇒ y = kx

−→v2 =

(
1
k

)
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6 General Solution
For a 2D system of differential equations with independent variable v we have
the general solution

x⃗(v) = c1e
λ1v v⃗1 + c2e

λ2v v⃗2 (9)

where C1 and C2 are real constants determined by the initial conditions. In
our case,

⇒ x⃗(s) = c1e
v

(
1
1

)
+ c2e

− 2r
σ2 v

(
1
2r
σ2

)
(10)

To obtain the solution to our original problem, we transform the equation
back with the reverse transformation as follows.

S = ev

⇒ v = ln s

⇒ x⃗(s) = c1e
ln s

(
1
1

)
+ c2e

− 2r
σ2 ln s

(
1
2r
σ2

)
= C1S

(
1
1

)
+ c2e

ln s
− 2r

σ2

(
1
2r
σ2

)
= C1S

(
1
1

)
+ C2s

− 2r
σ2

(
1
2r
σ2

)
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7 Phase Portrait Analysis
We conclude that our equilibrium is a saddle point. Assuming the interest rate,
r, is positive, then our positive discriminant and positive determinant of the ma-
trix indicates that the actual solutions will always approach a dominant vector.
In the case of x starting at a positive initial value in the first quadrant which is
the realistic assumption in any real world financial model, then according to our
general solution, the larger eigenvalue suggest that x which is the price of the
call option would eventually increases at the same rate as the y, the derivative
of call option’s price with respect to v, which is ln(S).

Furthermore, a bifurcation analysis of the matrix gives us insights into the
behavior of the solutions if we alter the parameters. In particular, we hold
the interest rate, r (input as b in Calplot3D), constant, and use three different
typical volatility values for sigma such as Google (0.2), Facebook (0.45) and
Tesla (0.3) stock (input as c in Calplot3D) for our study [5]. The corresponding
graphs shows that as the volatility of the stock increases, the general solution
converges faster to the 1:1 rate mentioned above.
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( b is the interest rate r) (c is the volatility σ)
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8 Real World Example - Tesla
Although the Black-Scholes is no longer used in industry, and this paper is
focused primarily on the qualitative features of the equation itself, we have in-
cluded an example of pricing a call option in the real world. Assuming the
following information for a call option on TSLA stock [6]

Strike price (K): 360.00usd
Option price (C): 0.01usd
Time to expiration (T): 0.0849 years (31 days until April 6, 2023)
Risk-free interest rate (r): 0.05
Underlying stock price (S): 687.20usd
Annualized volatility (σ): 0.6

The Black-Scholes formula can be used to calculate the theoretical value of
the call option:

C = SΦ(d1)−Ke−rTΦ(d2) d1 =
1

σ
√
T

[
ln

(
S

K

)
+

(
r +

σ2

2

)
T

]
d2 = d1 − σ

√
T

(11)

Plugging in the values:

d1 =
1

0.6
√
0.0849

[
ln

(
687.20

360.00

)
+

(
0.05 +

0.62

2

)
0.0849

]
(12)

= 1.7907 (13)

d2 = 1.7907− 0.6
√
0.0849 = 1.7096 (14)

Φ(d1) = 0.9636 (15)
Φ(d2) = 0.9477 (16)

=⇒ C = 687.20× 0.9636− 360.00× e−0.05×0.0849 × 0.9477 = 327.29 (17)

Therefore, the theoretical value of the call option is 327.29usd.
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